Scalable Integrated Circuit Simulation Algorithms for Energy-efficient Teraflop Heterogeneous Parallel Computing Platforms
نویسندگان
چکیده
Integrated circuit technology has gone through several decades of aggressive scaling. It is increasingly challenging to analyze growing design complexity. Post-layout SPICE simulation can be computationally prohibitive due to the huge amount of parasitic elements, which can easily boost the computation and memory cost. As the decrease in device size, the circuits become more vulnerable to process variations. Designers need to statistically simulate the probability that a circuit does not meet the performance metric, which requires millions times of simulations to capture rare failure events. Recent, multiprocessors with heterogeneous architecture have emerged as mainstream computing platforms. The heterogeneous computing platform can achieve highthroughput energy efficient computing. However, the application of such platform is not trivial and needs to reinvent existing algorithms to fully utilize the computing resources. This dissertation presents several new algorithms to address those aforementioned two significant and challenging issues on the heterogeneous platform. Harmonic Balance (HB) analysis is essential for efficient verification of large postlayout RF and microwave integrated circuits (ICs). However, existing methods either suffer from excessively long simulation time and prohibitively large memory consumption or exhibit poor stability. This dissertation introduces a novel transient-simulation guided graph sparsification technique, as well as an efficient runtime performance modeling approach tailored for heterogeneous manycore CPU-GPU computing system to build nearly-optimal subgraph preconditioners that can lead to minimum HB simulation runtime. Additionally, we propose a novel heterogeneous parallel sparse block matrix algorithm by taking advantages of the structure of HB Jacobian matrices as well as GPU’s streaming multiprocessors to achieve optimal workload balancing
منابع مشابه
Parallel Circuit Simulation: A Historical Perspective and Recent Developments
Transistor-level circuit simulation is a fundamental computer-aided design technique that enables the design and verification of an extremely broad range of integrated circuits. With the proliferation of modern parallel processor architectures, leveraging parallel computing becomes a necessity and also an important avenue for facilitating large-scale circuit simulation. This monograph presents ...
متن کاملFine-grained Parallel ILU Preconditioners with Fill-ins for Multi-core CPUs and GPUs
Numerical simulation and its huge computational demands require a close coupling between efficient mathematical methods and their hardware-aware implementation on emerging and highly parallel computing platforms. The paradigm shift towards manycore parallelism not only offers a high potential of computing capabilities but also comes up with urgent challenges in designing scalable, portable, and...
متن کاملScalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous...
متن کاملElectronic Design Automation with Graphic Processors: A Survey
Today’s Integrated Circuit (IC) architects depend on Electronic Design Automation (EDA) software to conquer the overwhelming complexity of Very Large Scale Integrated (VLSI) designs. As the complexity of IC chips is still fast increasing, it is critical to maintain the momentum towards growing productivity of EDA tools. On the other hand, singlecore Central Processing Unit (CPU) performance is ...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017